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ABSTRACT

Signal processing tasks normally encountered in a radar system, such as
pulse compression and moving target indication, are defined in terms of
recursive and nonrecursive digital filtering and the discrete Fourier trans-
form. Analysis of these algorithms reveals that the general second-order
recursive filter and the Fast Fourier Transform butterfly are kernels which
should be efficiently executed by a Radar Arithmetic Processing Element
(RAPE). This element would be the arithmetic unit of an envisioned pro-
grammable signal processor. With associated memory and a small micro-
programmed control unit, this element could be an independent, general-
purpose signal processor. As such, it may represent an "off-the-shelf"
module capable of replacing a wide range of existing special-purpose
hardware.

Computation schemata are used to display potential parallelism within
the computational kernels. By exploiting parallelism in hardware and by
using state-of-the-art components, the output of a second-order digital filter
may be computed in approximately 400 nsec. This is sufficient as an MTI
filter for a 2000-range-gate system. Similarly, an FFT butterfly may be
computed in approximately 150 to 200 nsec. This processing rate is suffi-
cient to compress pulses of widths from 100 to 0.4 psec (200 ft resolution)
within a 1-msec pulse repetition period.

Some consideration is given to incorporating the RAPE into a gener-
alized signal processing system containing parallelism at many levels. This
system would contain many RAPEs, each individually controlled, operating
concurrently.

PROBLEM STATUS

This is an interim report; work on this and other phases of the problem
is continuing.
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DESIGN CONSIDERATIONS OF A PROGRAMMABLE
PREDETECTION DIGITAL

SIGNAL PROCESSOR FOR RADAR APPLICATIONS

I. INTRODUCTION

Major signal processing tasks in a contemporary tactical radar system (see Appendix A)
include waveform generation, moving target indication (MTI), pulse compression (PC), and
video integration (1). Early radar systems executed these functions using special purpose
analog devices. As digital technology progressed, it became apparent that some of these
functions could be performed by sampling the analog signals and then performing the trans-
formations on the sampled digital data (Appendix B) and that system advantages accrued
when these functions were performed in the digital domain. The large bandwidths charac-
terizing radar signal returns necessitate high sampling rates which, in turn, require high
computation speeds. General purpose computer technology could not support such speed
requirements and so special purpose hardwired digital devices were used despite the unfa-
vorable effects on development time and risk and on life cycle costs resulting from the
design of a new processor for each new radar. The development of large-scale integrated
(LSI) circuit technology, along with the evolution of ultrahigh-speed memories, allows one
to consider the possibilities of performing these tasks via a programmable computing struc-
ture optimized for signal processing.

A complete signal processing task can be thought of as composed of a number of
levels, each level containing "resources" which may be called upon by the preceding level.
In this layered representation, shown in Fig. 1, each element of a particular level can be
considered a resource of the next higher level. Thus any particular signal processing task
may be defined in a nested manner. As an example, the statement

[SP [Radar [MTI [Recursive Filter [2-pole, 2-zero]]]]]

means that the signal processing task under consideration is a radar function, specifically
moving target indication (MTI). The MTI is implemented in the time domain via recursive
filtering (Appendix C) with the 2-pole, 2-zero filter as the basic element. If the system
contains elements from which the second-order filter can be composed, then further nesting
is possible. Real-time computing constraints dictate which level should be available as a
hardwired device. Analysis of various radar predetection algorithms reveals that the second-
order recursive filter and the FFT butterfly (Appendix D) should be directly available as
resources to higher level elements. Additional external control of the manner in which
these resources are used by elements of higher levels is required.

The apparent similarity between the sequencing and structure of the second-order
filter and the FFT butterfly suggests "merging" the two kernels into a single arithmetic
element. When this element is enhanced with data memories and an internal control unit,
possibly microprogrammed, it may represent an "off-the-shelf" module capable of replacing
a wide range of existing special-purpose hardware. It should be noted, however, that exter-
nal control or supervision will be required to incorporate this module into the total system.
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LEVEL 1 IDIGITAL SIGNAL PROCESSING I

LEVEL 2 |RADAR SP ACOUSTIC SP OPTICAL SP ECM SP]

LEVEL 3
MOVING
TARGET PULSE
INDICATION COMPRESSION INTEGRATION PULSE DOPPLER SPECTRUM

LEVEL 4 1 1 TFOURIER T DIFFERENCE
CONVOLUTION CORRELATION I TRANSFORM EQUATIONS

LEVEL5 ISECOND-ORDERLEVEL 5 SUM OF PRODUCTS FFT BUTTERFLY FILTER

LEVEL 6 COMPLEX MULTIPLY FULL ADD/SUBTRACT 

LEVEL M DEPENDS ON WHICH LEVEL OF INTEGRATION DESIRED

Fig. 1 - Signal processing structure

Work is currently under way in the design and fabrication of a prototype of an effi-
cient Radar Arithmetic Processing Element (RAPE) with the above properties. The design
of an external supervisor is also under way. These will be addressed in detail in subsequent
reports.

II. COMPUTATIONAL IMPLICATIONS

A programmable computing structure for real-time signal processing must be extremely
fast. To achieve this speed the structure should be reconfigurable to match the algorithm
to be executed. In addition, the basic arithmetic processing element of the structure must
be capable of executing, very efficiently, the computing kernel of the algorithm. In other
words, the processing element should, if at all possible, look like a hardwired version of the
kernel. The algorithm could then be realized (executed) by iterating the kernel, either by
hardware or by software, to match the algorithm. To maximize speed of computation, all
the parallelism inherent in the algorithm and in the kernel should be apparent in the struc-
ture. This is an important point, for there are many levels of parallelism within digital
signal processing algorithms and not taking advantage of it simply increases the execution
time. For example, the basic 2-pole, 2-zero filter element, from which all filters may be
realized (Appendix B), allows four multiplications and then two additions to be performed
concurrently. The basic FFT butterfly also allows concurrent arithmetic operations. At a
higher level, sophisticated filters may be realized using parallel and cascade forms. These
lend themselves either to parallel computations directly or to pipelining techniques for
cascaded filters. Similarly, the FFT computation contains enough parallelism to be exe-
cuted in the time it takes to compute one butterfly, if the hardware is available (2). In
summary: the parallelism is there; the problem is to exploit it!

2
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One of the reasons the capability to perform several arithmetic operations concurrently
within a computing structure has not been realized is that there has been no systematic
means for identifying parallelism within computational algorithms. Indeed, the range of
algorithms normally encountered makes this task no easy matter. Consequently, almost all
general-purpose computers have been built to execute algorithms in a single sequence deter-
mined entirely by the program. The single-sequence execution scheme not only obviates
possible speed increases due to parallelism, but also precludes more efficient code generation
which may be obtainable by performing the same computation in another order.

Recently a good deal of effort has been directed toward the representation and mod-
eling of algorithms in their "most parallel" form (3-5). While much of this work is still
in the embryonic stage, a few models have been devised which can be directly applied to
existing algorithms. One of these models, called a computation or program schema, is a
suitable vehicle for representing signal processing algorithms in their most parallel form.
Once the algorithms are represented in this form, computing structures may more easily
be devised which exploit the exhibited parallelism. Signal processing is an ideal vehicle
upon which to use these techniques since the workload contains a small class of highly
structured algorithms which lend themselves very well to decomposition and parallel
processing.

While each level in Fig. 1 may be represented via schema, only the second-order
recursive filter and the FFT butterfly will be so represented here. These models display
the data transformations within the kernel, along with a control structure, or precedence
graph, which orders the sequence of data transformations. These representations exhibit
parallelism at an arithmetic level and will be used to indicate possible realizations of an
arithmetic signal processing element.

The concept of computation or program schemata to represent algorithms and struc-
tures is new enough to warrant a brief description at this time. (For a more detailed ex-
planation, the reader is advised to consult Ref. 3.)

Every digital system, whether programmable or not, is comprised of a set of storage
cells and operators. Storage cells include such things as memory and arithmetic registers.
Operators include the logic blocks capable of performing transformations on information
contained in storage cells. The sequencing of such transformations is determined by the
control structure of the system and additional information contained in storage cells (e.g.,
the program). Within this framework a simplified computation schema will now be defined.

A computation schema is a finite set M of storage cells, a finite set of operators A, a
directed data flow graph, and a directed precedence graph. The nodes of the data flow
graph represent the operators and storage cells. The operator nodes transform information
contained in its incident nodes and place the results in the nodes to which emanating
branches are directly connected. The nodes of the precedence graph represent the instance
of occurrence of the operation associated with that node. An execution sequence of a
computation schema is a sequence of operator occurrences in an order consistent with the
precedence graph. The values associated with the storage cells depends upon which opera-
tion the operator nodes of the schema represent in addition to the execution sequence.
Hence, an interpretation of a computation schema is defined to be an association of the
particular transformation (e.g., add, multiply, shift left, etc.) with the operator nodes of
the schema.

3
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x> m

Fig. 2 - Second-order filter

Second-Order Filter - With this introduction, we represent the computation required
for the general second-order filter and the FFT butterfly in the form of a computation
schema. Consider the second-order filter represented in Fig. 2.

The output y at any instant k can be computed in a variety of ways. For our example,
we will use a 2-step computation, defined in terms of the labels in Fig. 2

Wo = X-B 1 W1 -B 2 W2 (1)

y = W0 +A1 W +A 2 W 2 . (2)

Assuming a unity sampling interval (i.e., y- 1 = exp (-jwr), = 1) a new output is com-
puted after each transfer of the contents stored in the delay elements. According to our
definition, we construct a computation schema for the filter in terms of the actual storage
cells and operators required:

Memory cells M {AiAA2,B 1,B 2,W0 ,W1,W 2, p,q,r,s,x,y}

Operators A {X1,X2,x3,x4,+1,+2ATIT2j-

It should be noted that the names of cells which store parameters (coefficients) will be
designated by the parameters themselves. For example, A 1 will be the value of the param-
eter stored in cell A 1 . Memory cells W1 and W2 represent the cells corresponding to the
delay elements; x and y represent the primary input and output cell of the filter, respectively,
and could be thought of as source and sink for input and output samples. Intermediate
storage cells are represented by W0,p,q,rs, and t.
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Fig. 3 - Data flow graph

The data flow graph representing the computation defined by Eqs. (1) and (2) is shown
in Fig. 3. Intermediate cells are used to store results between dependent operators in order
to avoid conflicts. Note that ordering of the two transfer operators is necessary to avoid
destroying information before it is used.

The precedence graph in Fig. 4 represents all allowable sequences of execution con-
sistent with the data flow graph. The partial ordering relations indicate dependent opera-
tions. Operations for which no ordering relation exists can be performed in parallel,
assuming that hardware facilities are available. For example, one particular execution
sequence is (X1, X2, X3, X4 ) performed concurrently, followed by (Al, T1) concurrently,
and finally (A2, T2) concurrently. This sequence can be completed in three execution
cycles. Another possible execution sequence is (X1), (X2), (X3), (X4 ), (+i), (T 1 ), (+2),
(T2) all performed sequentially. This computation requires eight cycles to complete.
Many other legitimate execution sequences are made possible by exploiting various degrees
of concurrency. It is obvious that the more parallelism exploited, the faster the total com-
putation time.

FFT Butterfly - The FFT butterfly, presented in Appendix D, may be computed in a
variety of ways. The schemata representation of the computation displays all possible exe-
cution sequences, and so may be used to arrive at an optimum configuration. In addition,
the segmentation of the computation into its real and imaginary parts is apparent. Figure 5
represents the FFT butterfly in its complex form; i.e., all operations and data involve com-
plex quantities. Each of the operators X, +1, and +2 can be decomposed into operators
whose domain and range consists of real quantities. When this is done, the configuration
in Fig. 6 results.
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BEGIN

END

INTERPRETATION:

Xi: -B X W, - P

X 2 : -2 X W2 q

X 3 : W1 X A1 - r

X 4 : W2 X A 2 s

+1: p+q+x- WO

+2: r + s + Wo y

T1 : W1 -+ W2

T 2: W -* W1

Fig. 4 - Precedence graph
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BEGIN

A2~~~~~~~~~~~~~~

END

low graph (b) Precedence graph

M: X(j) Wk p

Al: X (i) - p- X+ 1 (j)

A2 : Xm (i) + p - Xm+ ()

(c) Interpretation

Fig. 5 - FFT butterfly, complex

(a) Data f
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The precedence graph in Fig. 6b defines those operations which may be performed
concurrently as well as those which must be computed in sequence. For example, the
execution sequence composed of (X1, X2, X3, X4 ) followed by (+1, +2) and then (+3,
+4, +5, +6) allows the complete FFT butterfly to be computed in a minimum of three
execution cycles. On the other hand, nine execution cycles are required for a completely
sequential computation of the same butterfly. Obviously, there are execution sequences
which fall somewhere between these two extremes.

Two other interesting observations become apparent from a consideration of the
schema of the FFT butterfly. The first is that no memory cell in the data flow graph is
reused by subsequent operators. This implies that the computation may be executed in
a "pipelined" fashion. Accordingly, the throughput rate is determined solely by the
slowest operation in the pipe; i.e., the multiply. This, of course, assumes that data are
available when required by the operators. In Section III, a configuration based on the
apparent parallel pipeline characteristics of the FFT butterfly will be specified. The
throughput rate of this configuration is, indeed, equivalent to the cycle time of the multi-
plier. In addition, if each multiplier is configured by more than one sequential stage, then
the multiplier itself may be considered a pipeline. In this situation, the effective through-
put rate will be increased to that of the slowest stage in the pipe.

The second observation concerns the apparent left-right symmetry of the schema.
This fact permits the effective throughput rate to be doubled when real data are used.
In such a case, cells which normally hold imaginary data will now be supplied with real
data. Separating the data at the completion of the butterfly results in four real data points.
This idea will not be pursued in this study, although it will be discussed in future reports.

Each of the combined data flow and precedence graphs with which we have repre-
sented both the second-order filter and the FFT butterfly may be considered a hardwired
algorithm. As such, they may be synthesized directly from the representation using regis-
ters, multipliers, and adders for the storage cells and operators. The control sequence
could be generated either synchronously or asynchronously according to execution sequences
consistent with the precedence graph. For maximum speed of operation, the execution se-
quence chosen should be one containing maximum parallelism. This results, however, in a
significant increase of hardware. While a hardware implementation as just described may
be useful as a second-order filter, it does not possess the necessary storage required to
complete a full FFT of more than two points. By adding memory for working storage, we
can develop similar schema which do possess the capabilities of performing useful computa-
tions. This will be discussed in the next section.

III. DESIGN IMPLICATIONS

In the previous section, the data flow and sequencing of the second-order filter and
the FFT butterfly were presented purely in terms of registers and operators. A hardwired
digital system could be built for each algorithm based on the schemata. However, our
main goal is to develop a programmable system with more flexibility than a completely
hardwired device. This implies that we incorporate memory for data storage and a con-
trol unit for decoding instructions and sequencing the arithmetic element. In this section,
we incorporate data memories into the schema of the filter and butterfly and show that,
by using state-of-the-art components judiciously, real-time operation is possible. At this time,
we will not discuss in detail the elements of the control unit. However, some general com-
ments with respect to controlling the arithmetic element will be made in the concluding
section.

9
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Timing Considerations

To arrive at approximate timing and sampling requirements, we propose a simplified
radar system in terms of its range resolution and unambiguous range. We assume that the
radar system performs the functions of MTI, pulse compression, and video integration on
a variety of waveforms. The result of this processing will be a detection decision. We as-
sume that the MTI filter is implemented as a digital filter in which the notches and pass-
bands are determined by the coefficients. Two filters are considered: one a first-order,
single-pulse canceler, and the other a general second-order filter. The pulse-compression
filter is realized in the frequency domain by FFT's. The data aperture is chosen so that
an aperiodic convolution results. The digital integrator is realized as a simple first-order
recursive digital filter similar to the single-pulse MTI filter. While no specific structure is
assumed, the proposed arithmetic unit contains the hardware necessary to realize the second-
order filter and FFT butterfly operations. A specific design satisfying this requirement has
been specified by the author and will be presented in a forthcoming report.

We generate the sampling requirements based upon a hypothetical radar system with
an unambiguous range of about 85 mi and range resolution such that two targets separated
by 200 ft or more will be distinguishable. Thus, the basic uncompressed pulse width re-
quired is 0.4 sec, with a pulse repetition period (PRP) of 1.024 msec. We divide the
basic pulse repetition period into range gates corresponding to the 200-ft (0.4-Asec) resolu-
tion. Thus, we have 2560 range gates spanned by the PRP. We assume that a single sample
represents the return for a particular range gate. Hence the sampling rate is 2560 samples
per 1024 sec or 2.5 X 106 samples per second (2.5 MHz). In addition to the uncoded
pulse, we have available longer coded pulses to cover ranges up to 85 mi. By compressing
these pulses to 0.4 sec after their return, the requirements for 200-ft resolution and maxi-
mum signal-to-noise ratio are met. Since we are concerned with digital processing, we as-
sume coded pulses of widths which can be represented by 2 samples (v an integer). We
also assume an arbitrary coding scheme such that the time-bandwidth product of the pulse
allows compression to 0.4 sec, i.e., the resolution of the radar. Based upon these wave-
forms, we can compute the required sampling rates. This information is contained in Table 1.

Table 1
Sampling Rates

Uncoded Coded Required
Pulse Pulse Bandwidth Time X Bandwidth Sampling Rate (MHz)

Width Width (MHz) (Pulse Compression Ratio)
(,usec) (gsec) Single Channel I&Q*

0.4 25.6 2.5 64 5 2.5

0.4 51.2 2.5 128 5 2.5

0.4 102.4 2.5 256 5 2.5
0.4 204.8 2.5 512 5 2.5

0.4 409.6 2.5 1024 5 2.5

* I = In-phase channel
Q = Quadrature channel

10
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If we assume a quadrature system comprised of two identical channels, we can sample
each component at half the rate (6). This is termed bandpass sampling. In either case, the
total number of samples in a given time, with the same bandwidth, will be the same. The
last column of Table 1 lists the sampling rates for both the in-phase (I) and quadrature (Q)
channels (i.e., 2.5 MHz). With this sampling rate, the time-bandwidth product represents
the number of samples per coded pulse since, by our original assumption, we are representing
each 0.4-psec range gate with a single sample. By using a quadrature system, we can there-
fore process each specified waveform at a uniform sampling rate.

Moving-Target Indication - Consider the single-delay, feedback MTI filter shown in
Figs. 7 and 8.

M1 and M2 represent separate and independent memories which feed the multiplier.
M1 contains the feedback factor and M2 stores samples for each range gate (one word per
gate) for a time equal to the pulse repetition period. X represents the input from the A/D
converter. (I or Q) and could be a buffer memory. Each word of M2 holds the return for
a particular range gate so that a particular address is always associated with the same range
gate. We assume that all words are 8 bits and that either rounding or truncation occurs
where appropriate. In a worst-case situation, all range gates will be interrogated within a
PRP. Hence, according to Table 1, the throughput rate of the filter must correspond to
the input sample rate of 2.5 X 106 samples/sec or equivalently 400 nsec/sample. The
complete MTI operation, as deduced from Fig. 2, requires two memory cycles (M1 and M2
independent), a multiplication, and an addition. With state-of-the-art components as de-
tailed in Table 2, the single-delay recursive MTI can be computed in approximately 305
msec. Thus, it is possible to maintain the required throughput rate for the single-delay
MTI filter. By including an additional memory to store feedback terms for use during the
next PRP, the computation may be pipelined, thereby reducing the effective completion
time to about 150 nsec. This technique will be described by the author in a later report.

Let us now consider the general second-order filter, discussed in Appendix B, as a
double-delay MTI filter. Consider Figs. 9 and 10. M1 and M2 again represent independent
semiconductor memories, each with a 75-nsec access time and a 150-nsec cycle time.
They each contain 2560 words, one word per range gate. B, B2, A 1 , and A2 represent
storage cells for the coefficients and could be small separate read-only memories (ROMs).
W1 represents an intermediate register. Again all words are assumed to be 8 bits long and
the associated multiply and add times are those in Table 2. X and Y represent input and
output cells, respectively. For batch processing, these could be independent memory
buffers. It is now possible to compute the time of a single pass through the second-order
filter. The timing diagrams for both filters are shown in Fig. 11 and we see that a complete
pass through the second-order filter takes approximately 325 nsec. This, again, falls within
the throughput requirements of the hypothesized system. As was mentioned for the single-
delay canceler, reusage of memory M1 during the same PRP may be eliminated by incor-
porating an additional memory to store feedback terms for use during the next PRP. This
allows the filter to be pipelined during each PRP, thereby almost doubling the completion
rate.

It is also possible to accommodate higher PRF's by initiating the memory read and
write cycles earlier. This is possible because of the high memory bandwidth and the equiva-
lent cycle time of the multipliers. Varying PRF's can be accommodated easily by altering
the basic clock rate; thus, a staggered MTI for eliminating blind speeds is easily realized.

11



B. P. SHAY

Fig. 7 - Data flow graph
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BEGIN

--- READ

--- MULTIPLY

--- ADD

--- WRITE

(75 nsec)

(150 nsec)

(20 nsec)

(75 nsec)

END

Fig. 8 - Precedence graph

Table 2
Component Operating Speeds

Operation J Time (nsec)

Memory Access 75

8 X 8-Bit Multiply 150

8 X 8-Bit Add 20

3-Input Add 40

13
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DATA FLOW

Fig. 9 - Second-order filter
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BEGIN

READ

WRITE, MULTIPLY

ADD

WRITE, ADD

END

Fig. 10 - Precedence graph
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While the second-order filter is used here as an MTI filter, it can serve equally well
as the basic element of any digital filter (see Appendix C). Both cascade and parallel
realizations are possible by just cycling through the unit some fixed number of times.
For parallel realizations, results for each pass would be stored and added at the completion
of the final pass or accumulated at each pass. For cascade realizations, intermediate results
constitute the inputs for the next pass. While many filters can be represented by combina-
tions of identical stages, it may be necessary to alter the coefficients at each pass. This
configuration allows for such possibilities. These techniques can also be used to implement
multiple-delay cancelers.

As far as MTI is concerned, it can be shown (7) that the second-order filter produces
about a 10-dB improvement over the first-order filter, whereas a third-order MTI filter adds
only about 1 dB further improvement. In addition, as shown above, the second-order
filter requires only 20 nsec additional computing time over the first-order filter. However,
the hardware increase is significant; twice as much memory and about three times as many
gates.

Fast Fourier Transform - The FFT is the key to performing pulse compression in
the frequency domain. We therefore propose a configuration for computing the FFT, and
from this configuration we determine the implications of performing pulse compression in
real time.

For an N-point transform, there are log2N arrays to be calculated, with N points in
each array. Each new point in the next array is the result of a complex multiplication
and a complex addition. A complex multiply requires four real multiplications and two
real additions, and a complex addition requires two real additions. Thus, each new point
requires four real multiplications and four real additions. However, one-half of the complex
multiplies can be saved per pair of points, since Wq+NI2 = -Wq (see Appendix D). There-
fore, each pair of points requires four multiplications and six additions. Equivalently, each
new point requires two multiplications and three additions. Thus, the total number of real
multiplies and real additions for an N-point transform are 2Nlog2N multiplications and
3Nlog2N additions. As is discussed in Appendix D, and as can be seen from the precedence
graph in Fig. 12, many of these operations can be performed concurrently. Thus, each pair
of new data points can be computed in one multiply cycle and two addition cycles. Hence,
the total multiplication and addition cycles are (Nlog2N)/2 and Nlog2N, respectively. The
configuration we propose incorporates this "horizontal" parallelism as well as the over-
lapping of multiplication and addition cycles (i.e. pipelining).

Consider the configuration represented in Fig. 12a. M1 and M2 represent data mem-
ories and each of them contains half the required number of complex data points. The
coefficient store could be a separate ROM or a small hardware network to compute the
proper coefficients. M3 and M4 represent data memories which store the results of compu-
tations on the data contained in M1 and M2. Once N new points have been computed, the
roles of the memories are interchanged. Now M3 and M4 contain the input data for the
next stage, and the results of the computation are stored in M1 and M2 . (The initial loading
of M1 and M2 , the address generation, and the memory switching will not be discussed at
this time; however, they will be considered in a future report.)

The operators represent the required multipliers and adders (subtractors) each operating
on 8-bit real data words (i.e., a 16-bit complex), to produce 8-bit data words. All compo-
nents are considered to be current state-of-the-art. The operating speeds are as provided in
Table 2.
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(a) Data flow graph
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END

(b) Precedence graph

Fig. 12 - Parallel-pipelined FFT butterfly
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The sequence of operations defined by the configuration will now be described. We
assume that the input data have been loaded into M1 and M2 and that the addressing
scheme, i.e., the particular FFT algorithm used, is wired into the design. (For this con-
figuration an out-of-place algorithm is most appropriate.)

Two complex data points are read from Ml and M2 concurrently. As soon as the
data are available, the multiplication cycle begins. At the completion of the multiplication
cycle, the first addition cycle commences. This cycle is followed by the second addition
cycle. The computed data points are now written into M3 and M4 . The timing diagram,
in Fig. 13 describes the operation of the system in more detail. Since the memory cycle
time and the multiply cycle time are matched, it is possible to pipeline the system at the
multiply rate. Thus, the completion period of each FFT butterfly is 150 nsec. It should
be noted that in this situation all memories and all multipliers are operating at 100% duty
cycle. To achieve this duty cycle and throughput rate, parallelism was exploited in a variety
of ways. For example, memories Ml and M2 are read concurrently, while memories M3
and M4 are written into concurrently. Thus, operations on four independent memories
proceed simultaneously. The arithmetic element contains three horizontal levels of parallel-
ism, all obvious from the precedence graph. It is apparent that four multiplies followed by
two adds, and then four adds, are all performed concurrently. In addition, vertical par-
allelism is exploited by overlapping the next data fetch with the current multiply cycle,
the next multiply cycle with current add cycles, and the current data storage with the
next multiply cycle. The result of exploiting this maximal parallelism has been the real-
ization of a throughput rate equal to that of the multiply rate.

The configuration we have just defined is capable of executing one stage of an FFT
in r N/2 /Isec, where is the time to compute an FFT butterfly on two complex data
points. If we include gate transfer delays and address generation time, for this configu-
ration is about 200 nsec. Thus, it is possible to compute a 1024-point transform in 512
X 10 X 0.2 sec, or 1.024 msec. This, of course, assumes that the data have been loaded
into M1 and M2 in appropriate locations. The processing is then of the batch type. If
the processing is to be done in real time with respect to the sampling clock, then log2N
stages must be cascaded. In this case, a 1024-point transform will be completed in 512 X
0.2 usec or 102.4 sec. Typical FFT times for the batch and cascade modes are displayed
in Table 3.

We now consider the timing constraints imposed by the desire to perform pulse com-
pression in the frequency domain. The compression will be performed by first computing
the FFT of the incoming signal (pulse), multiplying this by a set of reference Fourier coef-
ficients, and then performing the inverse FFT on the product to obtain the compressed
pulse. We assume that each pulse will be represented by N data points and N zeros so
that the data aperture is essentially twice the uncompressed pulse width. This is necessary
to avoid overlap caused by circular convolution. The excess zeros essentially allow us to
transform a circular convolution into an aperiodic convolution. Since we have the capa-
bility of performing four multiplies simultaneously, the effective multiply time is assumed
to be approximately 160/4 or 40 nsec. We can now determine the time needed to perform
pulse compression on pulses of various widths. For example, the 25.6-psec pulse is repre-
sented by 64 data points, based on bandpass sampling (single channel). We now perform
the FFT on 128 points (half are zeros) to obtain 64 useful coefficients. The coefficients
are multiplied by the reference Fourier coefficients and then the inverse FFT is performed.
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Table 3
Typical FFT Processing Times

FFT Processing Time (sec)

Number of Number of Batch Cascade
Bits/Word Points

Number of Processing Number of Processing
Passes Time Stages Time

8 Real, 8 Im. 64 6 38.4 6 6.4
8 Real, 8 Im. 128 7 89.6 7 12.8
8 Real, 8 Im. 256 8 204.8 8 25.6
8 Real, 8 Im. 512 9 460.8 9 51.2
8 Real, 8 Im. 1024 10 1024 10 102.4
8 Real, 8 Im. 2048 11 2252 11 204.8

Thus, the time used to compress the 25.6-jisec pulse is

(2 X 128 log2 128 X 0.2 + 64 X 0.04) lsec,
2

or 184.3 /Asec. This, of course, presumes a batch mode of operation requiring seven passes.
If instead, we had cascaded seven stages for the FFT and another seven for the inverse, the
computation time would have been

(2 X 128 X 0.2 + 64 X 0.04) ,usec or 28.2 ,usec.
2

The values in Table 4 were computed in a similar manner for various pulse widths.

Table 4
Pulse Compression Processing Time

Pulse Compression Processing Time (sec)

Coded Number
Pulse of Points BatchCascade
Width per Pulse Number of Processing Number of Processing

Passes* Time Stages Time

25.6 64 15 184.3 14 28.2
51.2 128 17 419.8 16 56.4

102.4 256 19 942.1 18 112.8
204.8 512 21 2089 20 225.6
409.6 1024 23 4588 22 451.2

*Assumes one pass per multiply.
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Let us now refer to the specification of the radar system. The pulse repetition period
T is 1024 pusec. Assuming that we wish to compress a single pulse within this time period,
then with a single arithmetic unit in the batch mode, we are limited to pulses of duration
up to 102.4 jisec, as seen from Table 4. This situation can be remedied by cascading a
number of units so that the real time constraint is met. For example, consider the 204.8-
,sec pulse represented by 512 data points. If we cascade k units, then the computation
time for pulse compression is approximately

2N log22N
kN 109 TB + NTM, k = 1, 2, ..., log 22N,

where TB iS the FFT butterfly time and TM is the effective multiply time. Since this time
must be less than T, we can determine the required k. For the 204.8-jisec pulse, then

(1024 X 10) (0.2) + (512) (0.04) < 1024 psec
k

2048 + 20.48 < 1024 /Isec
k

2048 < 1024
k

k 2 (neglecting multiply time).

Therefore, we can conceivably meet the real-time constraint by cascading two processing
elements. Similarly for the pulse width of 409.6 /Isec, we have

(2048 X 10) (0.2) + (1024) (0.04) < 1024

4096 + 40.96 < 1024
k

k > 4 (neglecting multiply time).

Thus, four cascaded processing elements will allow us to compress the 409.6-bisec pulse in
the allowable 1024-bisec interval.

System Configuration

We have just demonstrated that an arithmetic element representing either the second-
order filter or the FFT butterfly can perform various predetection radar signal processing
algorithms in real time. As the real-time constraints increase because of higher signal band-
widths or more data points, more processing elements may be required per algorithm (e.g.,
pulse compression). In addition, the eventual decision as to whether a target is present at
a particular range is made only after some set of operations has been performed on digitized
signal returns. For example, a typical radar processing chain is illustrated in Fig. 14. (For
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a monopulse system, each channel actually consists of three or four separate signals, i.e.,
X, Ael, Aaz, each of which undergoes similar signal processing.) It is our contention that
a single type of processing element, incorporating the commonality of the FFT butterfly
and the second-order filter, may be used to execute each of the algorithms implied by the
signal processing blocks in Fig. 15. This implies that the chain of processing will be com-
posed of some number of identical processing elements, each of which will be controlled
to execute a particular function within the chain. In addition, each function may be
computed by one or more processing elements if the real-time constraints demand it.

The array represented in Fig. 15 is a generalization of the foregoing discussion. Each
large block represents a particular signal processing task. Each small block contained within
a task block represents a signal processing element. This element contains a small micro-
program control unit which essentially configures (and possibly sequences) the processing
element to perform a basic function such as a second-order filter, an FFT butterfly, or a
sum of four products, etc. In addition, each processing element, when self-contained, in-
cludes four data memories as well as the arithmetic section. A hardware address generator
may be included in each element for FFT applications (see Fig. 16). The particular func-
tion to be performed by the individual processing elements (e.g. FFT) and significant pa-
rameters will be passed to the individual elements from an external "supervisor." Note
that the functions performed within a given column will be identical, so the external super-
visor does not have to be too "smart."

While the array in Fig. 15, represents the signal processor in its most general form,
there are many situations in which only a small number of processing elements will be
required. In fact, for situations involving one channel and moderate bandwidths, one
processing element may be sufficient.

IV. CONCLUSIONS

The bulk of radar signal processing prior to a detection decision can be performed
digitally, and in real time, by a programmable computing structure. That is the general
conclusion of this work; however, there are numerous conditions upon which that state-
ment is based.

Moving target indication, pulse compression, doppler filtering, and video integration
can all be decomposed into various combinations of basic algorithmic kernels. The kernels
of particular interest are the general second-order recursive digital filter and the fast Fourier
Transform butterfly. By exploiting maximal parallelism within the kernels, configurations
have been defined which execute the filter computation in about 400 nsec and the butterfly
in about 200 nsec. Current state-of-the-art technology is assumed for both arithmetic ele-
ments (multipliers and adders) and memory units. The second-order filter can be considered
a "complete" MTI filter, whereas the butterfly is only a small part of a total Fourier trans-
form. However, with this butterfly as a basic module, a 1024-point complex Fourier trans-
form can be completed in approximately 1 msec.

By performing two FFT's and a multiply, pulse compression can be realized in real
time with one processing element, for pulse widths up to 100 gsec. Longer pulses and/or
higher bandwidths can be accommodated by cascading some number of processing elements.
Digital MTI filters of higher complexity can be synthesized by iterating the basic second-
order filter.
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Fig. 16 - Signal processing element

Program schema have been used to display maximal parallelism within the kernels as

well as to indicate the required control sequence for computing the two kernels of interest.

These models have, in addition, shed light on the problem of controlling a single arithmetic

element to behave either as a second-order filter or as an FFT butterfly. It should be noted

that there is a large degree of commonality between the filter and butterfly computation.

For example, both kernels require four multiplications which can be computed concurrently,

four memories for data storage, a small coefficient store, and similar arithmetic sequencing.

Differences arise primarily with respect to the data flow paths. A small microprogrammed

control unit within a single arithmetic element may be used to direct the data flow. In

addition, it can provide a means for utilizing the numerous subfunctions within the basic

kernels. For example, the four multipliers may be used to compute the sum of four prod-

uct terms simultaneously. The details of the foregoing approach will be reserved for future

reports (see, for example, Ref. 8).

A general observation concerns the apparent hierarchy in which potential parallelism

arises within signal processing algorithms. At the lowest level, for example, is the horizontal

and vertical parallelism exploited within the basic computational kernels. This involves mainly

the potential for concurrent arithmetic operations, overlapping of fetch and execute cycles,

and pipelining where appropriate. The next level of parallelism is defined by the concur-

rent operation of a number of processing elements to satisfy real-time constraints (e.g.,

pulse compression). At a higher level, it may be required to process a number of signal

channels simultaneously, as in the pulsed radar system. In addition, the chain of processing

(i.e., MTI, PC, Integration) within each channel represents a possible pipeline situation, or

a fourth level of parallelism. A total signal processing system, then, can be considered a

generalized hierarchical parallel processor. However, there exists one major difference and

that is with respect to the workload. The parallel processor we have defined is a direct

outgrowth of the potential parallelism within signal processing algorithms and the environ-

ment in which they occur. In this sense, the problem of discovering applications for a given

parallel architecture in order to justify the structure is nonexistent.
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Appendix A

RADAR SIGNAL PROCESSING

MOVING TARGET INDICATION

MTI systems are used to detect moving targets in the presence of clutter. Basically,
an MTI system is a filter which rejects energy at clutter frequencies and passes energy at
the doppler shifted frequencies due to returns from moving targets. For a pulsed radar
system, where T is the pulse repetition period (PRP), energy returned from stationary
clutter will be concentrated at multiples of the pulse repetition frequency (PRF), 1T.
Because of the doppler effect, energy returned from moving targets will be somewhat dis-
placed from these frequencies. Accordingly, a filter whose response is indicated in Fig. Al
will pass signals due only to moving targets. In its simplest form, an MTI filter subtracts
two successive returns (pulses) from the same location. Reflections from stationary clutter
will then cancel, while those from moving targets will be passed. This form of filter is
known as a single-delay canceler and is shown in Fig. A2.

IH(jw)I

CLUTTER

TARGET

-f 1
D T fD

f
2
T

Fig. Al - MTI filter response

INPUT
CANCELED
RESIDUE

DELAY = PRP

Fig. A2 - Single-delay canceler
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Frequently, clutter is nonstationary; that is, it contains nonzero velocity components
in the radial direction. To remove energy due to this velocity component, a technique
known as clutter-locking can be used. In this technique, the phase difference between two
successive returns due to the average phase change of moving clutter returns is fed back to
a phase shifter which modifies the phase of the undelayed signal accordingly. Essentially,
this feedback network allows the filter to lock onto the moving clutter and use that as a
reference. Signals will then be passed whose concentration of energy is displaced from
multiples of the average clutter frequencies. A simplified version of a clutter-locked filter
is shown in Fig. A3.

x(k) y(k)

y(k) = x(k - 1) - x(k +t0 )

Fig. A3 - Clutter-locked MTI filter; to is the relative phase shift due to moving clutter

More sophisticated MTI filters can be obtained by canceling more pulses, weighting
pulses differently according to their delay, and using feedback paths. These variations
define the notches and pass bands of the filter. In Figs. A4a through f, typical MTI filters
are shown. Along with each filter is the difference equation which describes its behavior
and the corresponding transfer function in the z-domain, where y- 1 represents a delay of
To the PRP.

PULSE COMPRESSION

It has been shown* that if an optimum detection procedure is used, the sensitivity
of the radar receiver depends only on the total energy of the received signal and not on
its form. In order to avoid generating high peak power signals to achieve increased energy,
it is necessary to generate long pulses. This not only increases the average power End hence

*Berkowitz, R.S., "Modern Radar," New York, Wiley, 1965
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y(k)

(d) Equivalent to cascade filter where the weights are a = 1, a = -2, a = 1

HW= 1+1 Y (Z)
Hz) = 1 + B - X(Z)

y(k) = x(k)-B 1 x(k-1)

y(k)
(e) Recursive single delay

x(k)
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( 1 + B z- + B2z-2 + + BNZ 1 X(z)

N

y(k) = x(k)- E Bjy(k - i)
i-1

(f) Recursive multiple delay

Fig. A4 - MTI filter forms
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sensitivity, but also improves the velocity resolution of the receiver. On the other hand,
the range resolution (i.e. the ability to distinguish multiple targets) suffers. By coding the
transmitted signal the effective bandwidth is increased, thereby improving the range reso-
lution capabilities of the radar. Transmitting this coded, long pulse and processing the
received signal in a "matched" filter simultaneously improves the sensitivity, range, and
velocity resolution of the radar. The "matched" filter, by taking advantage of the high
time-bandwidth product of the incoming signal, essentially compresses the incoming pulse
into a very narrow pulse, thereby obtaining the range resolution of a narrow pulse system.
The process of filtering the coded signal to produce a narrow pulse is generally called pulse
compression and, in this context, the matched filter is the pulse compression filter.

While the performance of a pulse compression system depends upon the type of
coding selected (e.g., linear FM, phase coding, etc.), the actual implementation of the
matched filter depends upon which mathematically equivalent formulation of the filter
is chosen. The equivalent arises because the properties of the Fourier Transform permit
the matched filter to be expressed in either the time or the frequency domain or both.

A filter is considered "matched" to its input signal when its transfer function is the
complex conjugate of the Fourier transform of the signal. Since the transform of the out-
put of the filter is the product of the input transform and the transfer function, the out-
put time signal can be found by performing an inverse transform on this product. These
operations are described here diagrammatically.

Time Frequency

Transmitted Waveform x(t) X(jw)
Received Waveform x'(t) X'(jw)

Filter Output y(t) Y(jw)
Transfer Function h(t) H(jw)

(Impulse Response)

X'(jw) H(jw) Y(jw)

For a matched filter,

H(jw) = X*(jw) [X'(jw)] *

y(t) = F-1 [X*(jw)X'(jw)]

where X* represents the complex conjugate of X.

This formulation can be implemented directly in hardware as shown in Fig. A5. In
this situation, the reference waveform x(t) and its transform would be locally generated.

From the theory of the Fourier transform, it can be shown that the inverse transform
of a product of two transforms is equivalent to the convolution of the two time functions.
For the matched filter then, the output can be computed by convolving the received signal
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x'(t) _ ~~~~~~~~~~~~~~~~y(t}

x(t)

Fig. A5 - Pulse compression in the frequency domain

with the impulse response of the filter. Since the transfer function for the matched filter
is the conjugate of the transmitted signal, the impulse response is the time inverse of the
reference signal. The required convolution is therefore equivalent to the cross correlation
of the received signal with the reference (transmitted) signal. This observation leads to a
direct implementation in hardware as depicted in Fig. A6. Thus the matched filter can be
implemented in either the time domain (Fig. A6) or the frequency domain (Fig. A5).

Since we are primarily concerned with performing radar signal processing numerically
we now discuss digital implementations of the matched filter. Performing the Fourier
transform on a sampled signal leads to what is called the Discrete Fourier Transform (DFT)
of a sequence of numbers. The discrete version of the "matched" filter in the frequency
domain is shown in Fig. A7. In this situation, the Fourier coefficients of the reference
signal would be stored. As will be shown later, the advent of the Fast Fourier Transform
(FFT) renders the frequency version a viable candidate for implementation as a pulse com-
pression filter.

As has been discussed, convolution with the inverse time function is equivalent to
correlation. This equivalence is directly applicable in the discrete case and is depicted in
Fig. A8 as the time domain matched filter.

x, (wt) +3 9_ y(t) = x(X) x(t+X- T) dX

x(X)

Fig. A6 - Pulse compression in the time domain
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x' (k) L 0

x' (k) = the k-th sample
of the received signal

Fig. A7 - Digital

y(k)

x(k)

pulse compression in the frequency domain

N-1

:) = E x' (k)x(k-q),
k=O

q = 0,1,--,N-1

x(k -q)

Fig. A8 - Digital pulse compression in the time domain

x(k)

Fig. A9 - Digital integrator

VIDEO INTEGRATION

A digital integrator is a device which adds a delayed sample to an incoming sample
and stores the result. This result is then delayed (stored) until the next sample arrives,
at which time the two are added and the result is stored. This process continues until a
threshold is reached, at which time a detection is made. Generally, the stored samples
are first multiplied by a constant less than 1. The digital integrator is represented in
Fig. A9. It should be noted that this integrator is equivalent to the single-delay recursive
filter depicted in Fig. A4e.

x' E Y((

- .
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Appendix B

GENERAL DIGITAL SIGNAL PROCESSING

In very general terms, the envisioned programmable signal processor will operate on
samples of a high bandwidth demodulated (video) signal to produce a detection decision.
The intermediate processes essentially enable the radar system to "look" at only what it
is of interest (e.g., moving targets) while maximizing the chances of a correct detection
decision. Accordingly, the entire signal processor can be thought of as a digital filter
composed of various combinations of operations involving convolution, spectrum genera-
tion, and recursive and nonrecursive digital filtering. These operations are all variations
of what is termed a general linear digital filter defined as follows.

A digital filter is a device, or operation, which transforms a sequence of
numbers into another sequence of numbers possessing the properties of

1. Linearity: If {xj-*{yj} and jvj-<{vj,

then a{x41 + b{v}v-a{yn} + bfwi}.

2. Time Invariance: If {x}HY-1,

then {Xn+v}-Kyn+ }

CONVOLUTION

As with analog linear filters, a digital filter can be characterized either by its impulse
response, frequency response, or by the linear equations relating its input to its output.
In the digital or discrete case, the impulse response is the output of the filter due to an
input

1, n = 0

Xn 
0, n + 0

If we let H(kM) be the DFT of hn, then it can be shown that the output yn of a digital
filter, characterized by H(kM), is

Yn = IDFT [X(kQ) H(kM)]

N-i
Yn = ;X(k) H(kQ) exp j nk) n = 0, 1, , N -1.

Thus, the output of the filter can be computed when H(kM), the frequency response of
the filter at the frequencies (27r/N) k (k = 0, 1, 2, , N - 1), is known.

37



B. P. SHAY

DIFFERENCE EQUATIONS (RECURSIVE AND
NONRECURSIVE FILTERING)

The output of a digital filter can be computed directly from the difference equations
which characterize its behavior. It can be shown that if x,, is the input sequence and y,
is the output sequence, then

in P

Yn =Lai xn-iZ- bi n-i-
i=O i=1

The filter is thus characterized by m, p, and the coefficients a, bi.

The three distinct, but equivalent, characterizations of a digital filter are presented
in Figs. B1, B2, and B3.

If we let hn be the impulse response, then by the principle of superposition, the
output y(n) of the filter due to any input sequence x is

00 00

Yn = TL xjhn-i =E xn-ihi-
j=-ooi=0

Hence, the output sequence is the weighted sum over all previous values of the input
sequence. The weights constitute the impulse response and thus characterize the filter.
This computation is termed linear convolution.

FOURIER TRANSFORM (SPECTRUM GENERATION)

Corresponding to the Fourier transform of an analog signal, the discrete Fourier
transform (DFT) of a sampled signal (sequence) xn is defined as

Njl
DFT [xn] 0 xn exp 27 n X(k&),

n=0

k = 0, 1, ... , N - 1,

where = (27r/N), and N is the number of samples to be transformed. Similarly, the
Inverse Discrete Fourier Transform (IDFT) transforms X(kn) back to the original time
sample and is defined by

xn 1 X(k2) exp (i Nkn), n = 1, ,N 1.

k=O

In Fig. Bla, h, represents the impulse response of the filter. These values would
be stored and read out in reverse order if the input sequence arrived in real time. In
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(a) Convolution

Xn L ;-

(b) Fourier transform

(c) Difference equation

Fig. B1 - Digital filter characterizations

Yn

Yn

Xn
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Fig. Blb, H(k2) is the DFT of hm and represents the frequency response of the filter.
These values would be stored and read out for each k. In Fig. B1c, A represents the
delay corresponding to the sampling interval used for direct implementation of the filter
via the difference equation.

It should be clear that the three implementations of the digital filter lead to three
distinct computational algorithms for evaluating the output. Which algorithm or realization
one chooses depends upon the speed requirements, hardware complexity and accuracy, and
ease of programming. In addition, within each algorithm there are computational variations
which can affect the accuracy and speed of the computations. For example, convolution
is essentially a vector dot product for each n. Hence, the additions can be partitioned to
incorporate parallelism or to minimize storage. For the case of direct evaluation of dif-
ference equations, there are many implementations which affect the accuracy and speed.
These will be discussed in more detail later. In Fig. Blb, great increases in computational
speed can be obtained by computing the DFT and IDFT using any of the FFT algorithms.

An MTI filter, in order to extract echoes from moving targets, places stopbands about
all multiples of the PRP. This implies that the delay elements store samples for a duration
T, at which time the sample is operated upon. For an MTI filter, however, one or more
samples represent the return for a particular range of interest (range gate). In this situation,
the storage medium must hold samples for all range gates. Thus for real-time operation,
the MTI filter must be capable of processing data at the sampling rate, although the filter
characteristics depend upon the pulse repetition period. Accordingly, the filter may be
designed on a PRP basis (i.e., assuming one range gate) as long as the computations can
be completed at the sampling rate. Thus, designing an MTI filter is equivalent to designing
either a recursive or a nonrecursive digital filter of specified frequency characteristics.

It should be apparent that any implementation of the general matched filter can be
used to realize a pulse conpression filter. In particular, the reduction in the number of
computations due to the FFT allows realistic signals to be compressed via the frequency
domain.

The video integrator is a special case of the computation representing the solution to
the general difference equation and can be considered a first-order digital low pass filter
(see Fig. A4e).

The foregoing discussion indicates that the radar signal processing tasks of interest
are essentially special cases of the general signal processing algorithms presented in this
section. In particular, Table B displays the equivalences.

Table B1
Generalized Radar Signal ProcessingI Moving Target Pulse 1 Video 1 Pulse | Waveform

Indication Compression Integration Doppler Generation
Spectrum Generation
(Fourier Transform) X X
Convolution/Correlation X
Difference Equations
(Recursive and X X X
Nonrecursive Filter)
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RECURSIVE FILTER DESIGN

Both MTI filters and digital integrators may be considered particular implementations
of general recursive and nonrecursive digital filters. Therefore, the problem of designing
an MTI filter is equivalent to designing a recursive or nonrecursive digital filter whose
frequency response is determined by the PRP and the doppler shift. Recursive digital
filters seem better suited to MTI applications than do nonrecursive filters since the filter
characteristics can more easily be altered.

There are numerous methods for designing recursive digital filters specified in the
frequency domain. One of the most convenient is to transform the digital filter specifica-
tions (critical frequencies, etc.) to equivalent analog filter specifications. The filter is then
designed as an analog filter. Once the analog filter is designed, applying the bilinear trans-
formation s - (z + 1)(z - 1) yields the desired digital filter as a ratio of polynominals in
z. The coefficients determine the locations of the poles and zeros in the z-plane and rep-
resent the feedforward and feedback multiplying factors in the realization.

Before discussing various implementations of digital recursive filters, we present some
introductory material concerning the z-transform.

Z-TRANSFORM

A digital filter, when applied to a sampled signal, possesses frequency-selective prop-
erties akin to those of an analog filter applied to a continuous signal. While the DFT can
be used to represent the frequency characteristics of the filter, the periodic frequency
response caused by the sampling process renders this approach unattractive for analysis
and synthesis. A transformation z = exp (jwt), which maps the jw axis onto the unit
circle and the left- and right-hand planes interior to and exterior to the unit circle, respec-
tively, displays the redundancy as circular symmetry. The transfer function which can
now be expressed in terms of z contains all the frequency-selective information about the
filter. Since the filter can be represented as a linear difference equation, the z-transform
technique can be used to reduce the solution of the difference equation to that of solving
an algebraic equation in z. In the analysis to follow, it will be convenient to characterize
digital filters in terms of both z and the difference or recursive equations. Accordingly,
the z-transform will be defined more precisely.

Let {x41 be the sequence of numbers representing the sampled function x(nT), where
r is a fixed positive integer (i.e., the sampling interval). Then the z-transform of the
sequence is defined as

00 00

Z[xn] = X(z) =A Xn z n x(nr) z n = Z[x(nT)] .

n=O n=O
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Some properties of the z-transform which will be used implicitly in the analysis are
listed below.

1. Linearity: Z(ax1 + bx2 ) = aZ(x1 ) + bZ(x 2 )

2. Time Displacement: (assuming zero initial condition)

If Z(x) = X(z), then

a. Z[x(t + r)] = zX(z)

b. Z[x(t + kr)] = zkX(z)

c. Z[x(t-kr)u(t-kr)] = z-kX(z)

1, tkr> 0
where u(t - kr) = {

0, t -kr < 0

From 2c it can be seen that multiplication by z- 1 represents a delay in time of the under-
lying signal by an amount r.

Consider the general representation of the difference equation.

m P

Yn = Tai n-i - bi Yn-i-
i=O i=1

If we compute the z-transform of both sides of the equation, then by applying properties
1, 2, and 3 (with r 1) we obtain

m P

ZYn] =ai Z[Xn-i] -L bi Z[Y,-i]
i=O i=1

m P

Y(z) = ai z-i X(z)- bi z-iY(z)
i=O i=l

m P

Y(z) = X(z) ai z - Y(z) bi zi
i=O i=1

Y(z) = Li +L bi zZ = (z)Z ai zi
i=l i=O
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L ai z-i
Y(z) = X(z) = H(z) X(z).

P

1+L bi z-i
i=l

Thus H(z), termed the system function, relates the input z-transform to the output
z-transform. It is this function which defines the frequency-selective properties of the
filter. This is so because the location of the poles and zeros in the z-plane uniquely
determines the transfer function. Since the z-transform maps the imaginary axis of the
s-plane onto the unit circle in the z-plane, frequency is now measured along the circum-
ference of the unit circle.

FILTER FORMS

Realizations of digital filters can be implemented physically in terms of delay elements
along with adders and multipliers. Filters composed of these elements are essentially direct
representations of linear difference equations. Each filter has four basic forms or algorithms
for its implementation. These are generally referred to as (a) direct, (b) direct canonic,
(c) cascade, and (d) parallel implementations. Each realization, though structurally dif-
ferent, produces equivalent results when word length and speed of computation are of no
consequence. However, since we will be dealing with a finite word-length machine, the
particular realization we choose to implement is of major concern. Finite word-length
requirements essentially affect the performance of the digital filter by adding noise to the
system in three ways:

1. The quantization of the input, which is a function of the A/D converter used.

2. The rounding or truncation of products or sums of products which are fed back
to be used in further computations.

3. The quantization of the coefficients of the difference equations, which can
result in unstable operation of the filter because pole locations may be moved
outside the unit circle.

It is generally agreed that both the direct and the direct canonic forms are the most sensi-
tive to these errors, whereas the parallel and cascade combinations of second-order system
are less sensitive. However, direct comparisons cannot be made without first deriving the
scaling factors used to prevent machine overflow.

Parallel and cascade realizations contain, as the basic element, the general second-
order filter depicted in Fig. C1. This stems from the fact that the system function H(z)
can be expressed either as a product or as a partial fraction expansion. The product form
leads to the cascade realization and the partial fraction form to the parallel implementation.
Since these realizations are less sensitive to noise, they are generally preferred.*

*Edwards, R., Bradley, J., and Knowles, J.B., "Comparison of Noise Performances of Programming Methods
in the Realization of Digital Filters," Proceedings of Symposium on Computer Processing in Communication,
Polytechnic Institute of Brooklyn, April 8-10, 1969; Polytechnic Press, Brooklyn, N.Y., 1970
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y () xx~k)

ao + a z-1 + a -2 _ Y(Z)

1 + b Z-1 + b 2 z-2 - X(z)

y(k) = a0 x(k)+a 1 x(k -1)+a 2x(k -2)-b 1 Y(k-1)-b 2 Y(k - 2)

2 DELAYS, 5 MULTIPLICATIONS, 4 ADDITIONS

Fig. C1 - Second-order filter

In Figs. C2 through C5, the direct, direct canonic, cascade, and parallel implementa-
tions are displayed. Each figure contains the transfer function in the z-domain, the rele-
vant difference equation, and the number of delays and arithmetic operations to be per-
formed within a sampling interval.
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DIRECT FORM

TRANSFER FUNCTION

H()= +°1_ z N~ =5J Y(z)
H) 1 +bll +...+bNZ-N X(Z)

DIFFERENCE EQUATION

N N

y(k) = Zax(k - ) - Y biy(k - )
i=0 =1

REQUIREMENTS (PER SAMPLING INTERVAL)

2N DELAYS; 2N+1 MULTIPLICATIONS; 2N ADDITIONS

Fig. C2 - Direct implementation of second-order filter
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y (k)

TRANSFER FUNCTION DIFFERENCE EQUATIONS

aoai-1+.+aNZ-N NH (Z. a ) a = I N X (Z) S1 (k + 1) = x(k) - bS (k)
I + b Z-1 +. + b -N X~z I

IIy(k) = aox(k) + (a1 - a0bi) S(k)

L IV S1 (k + 1) = x(k) - N b S (k + 1

REQUIREMENTS (PER SAMPLING PERIOD)
N DELAYS, 2N+1 MULTIPLICATIONS, 2N ADDITIONS

Fig. C - Direct canonic implementation of second-order filter
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CASCADE FORM

TRANSFER FUNCTION

' + aIz-1 + iz-2 Y z) n1

-1 1 ±13 1 .Z
1 ±P2 iz2 X (Z

DIFFERENCE EQUATIONS (a0 = 1)

y1 (k) = ox(k) + a x(k 1) + 21 x(k 2) - 11 y1 (k - 1) - 21 y (k - 2)

Yi (k) = j_ (k) +a jyj_1 (k -1) +a2iyi-(k -2) - 1 jj(k -1) - 2iyi(k 2); i 2 m

y (k) = ym (k)

REQUIREMENTS

N DELAYS; 2N+1 MULTIPLICATIONS; 2N ADDITIONS

Fig. C4 - Cascade implementation of second-order filter
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PARALLEL FORM

(k)

x(k) y(k)

* /Ym(k)

TRANSFER FUNCTION

a,0 + cl xz-1 Y(Z)
H(z) = &eo +Y1 +0i- +iZ2 Y(Z)= 1 1 + 1 1 2

2 X z

DIFFERENCE EQUATIONS

yi(k) = a&0 x(k)+ 1jx(k-1)-0 1jy(k-1)-I 2iy(k-2)

y(k) = aox(k) + yj (k)

REQUIREMENTS

N DELAYS, 2N+1 MULTIPLICATIONS, 2N ADDITIONS

Fig. C5 - Parallel implementation of second-order filter
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FAST FOURIER TRANSFORM - SPECTRUM GENERATION

The various realizations of digital filters operate on time domain input samples to
produce time domain output samples directly. While the particular filter to be realized
may be designed in the frequency domain, the actual operation of the filter is defined
by its time delay elements and the coefficients which multiply the delayed samples. It
is shown in Appendix B that equivalent digital filters may be realized by operating in the
frequency domain and it is indicated that the Fast Fourier Transform (FFT) is the key
to such a realization. This is based on the fact that the FFT algorithm enables one to
compute the Fourier coefficients of the Discrete Fourier Transform (DFT) iteratively,
thereby reducing the computation time considerably. For example, if the time sequence
consists of N= 2m sample points, then (1/2)Nlog 2 N complex arithmetic operations are
required to evaluate all N-associated Fourier coefficients. On the other hand, direct
evaluation of the DFT requires N2 similar complex arithmetic operations. For large N,
this enormous savings in computational time renders frequency domain analysis in real
time a distinct possibility.

While there are many versions of the FFT algorithm in the literature, they are all
equivalent in the sense that they exploit the redundancies in information caused by the
inherent periodicity of the complex exponential functions used in the DFT computations.
The equations for the DFT are

N-t
X(k) rx(n)Wnk, k = 0, 1, ... , N-1, (DI)

n=0

where

X(k) = equally spaced spectral (Fourier) coefficients, k = 0, 1, ..., N - 1,

x(n) = equally spaced time samples, n = 0, 1, ... , N - 1

. 27r-J -
W=e N

N= 2v = number of points in the transform (v an integer).

It can be seen from Eq. (DI), that N2 complex multiplications and additions are
required to compute the spectrum at N frequencies, given N sample points. The FFT
reduces the number of complex multiplications to (N/2)log2 N and the number of complex
additions to Nlog2 N.

The basic computations composing the FFT algorithm can best be described by re-
ferring to Fig. Dl, a representation of the FFT for v = 4, N= 24 = 16. Let us assume
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XV(@) X1 (-) X2 (-) X3 ( X4

XO(O) 0000 …… 0 Q --------- (---)--
XO(1) 0001 (NEi - -7 08

XO(2) 0010 0 4 _ - 0 -.,8 -- 4f

X0 (3) 0011 12

XO(4) 0100 42\- 0

XO(5) 0101 8 10

XO(6) 0110 6

XoM7 0111 2y2 > a3 f < 14
X0 (8) 1000 4 - ---- 2-E

x0 (9) 1001 9

XO(10) 1010 / 8…4410 5

XO(11) 1011 13

X0 (12) 1100 - - - 3

X0 (13) 1101 \1 1\

XO(14) 1110 8 12 1 - 7 7
'N,

X0 (15) 1111 81 15

Fig. Dl - FFT (in-place algorithm)

that the original N data points are represented as elements of the vector X(j), = 0, 1,
..., N - 1. The elements of this vector are in turn represented by the first column of
nodes in the figure. The computation proceeds by calculating the next vector column
of nodes) Xl(i) from XO(.). The vector X2(.) is then calculated from X1 (.), and so on
for X3 (.), ... , XlOg2N(.). The resulting vector of Fourier coefficients will appear at the
last iteration. However, the order in which the elements of the last vector occur must
be changed to reflect the proper ordering of the coefficients. This is easily done by
reversing the order of the binary representation of the jth spectral point.

To display the actual arithmetic operations involved, we pick data points XO(O) and
XO(8) from the first column and, from these, compute Xl(O) and X1 (8) of the next
column. This computation is depicted in Fig. D2.

The solid arrow brings a complex quantity from the node XO(8) and multiplies it by
Wq, where q is the integer in the circle; in this case, qe{O, 8}. These complex products
are added to the complex quantity brought via the dashed arrow from the node XO(O).
Thus, the two nodes in vector X1 (.) imply the computation

X1 () = X0(O) + Xo (8) Wo
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X0(.) X1 (-)

XOMO _ )X ()

X0(8) i X 1 (8)

Fig. D2 -Actual arithmetic operations of Fig. D1

X1 (8) = X (0) + X (8) W8.

In this manner, all the elements of the vector X1 (.) are computed from elements of the
vector X (.). As was previously mentioned, vector X2 (.) is computed from vector X (.)
in a similar manner and so on for the remainder of the vectors. It remains to be shown
how the integers q, in the circles, are computed. Consider the number in the circle of
the jth node of the mth vector. This number can be found by representing in its binary
form, shifting it by (log2N -m) places to the right with zero fill on the left, and reversing
the order of the bits. For example, X3(13) has address 13 =1101. Scaling by 4 -3 = 1
gives (0110) and reversing the order of the bits gives (0110) =6. This is seen to be the
number in the appropriate node in Fig. D1.

An examination of the figure reveals that there are always two nodes in vector m + 
which are affected by the same pair of nodes in vector m, and that no other nodes in
vector m + 1 are affected by this pair of nodes in vector m. The two nodes in vector
m + and the two nodes in vector m form a rectangle. The computation represented by
this rectangle is generally referred to as the FFT "butterfly" and can be written as

Xrn+l(i) = Xm(j) + Xm(j)Wql

XM + 1 W = X (i) + Xm (j)Wq 2.

It should be noted that the pair of nodes in the (m + )th vector have solid arrows coming
from the same node in the mth array and that the integers in the circles differ by N2.
Since Wq +N /2 = Wq WN /2 = Wq exp (27r IN) N2 = Wq (-1) =- Wq, the multiplications
required for these two nodes for the (m + )th vector are negatives of each other. This
implies that the computations for both nodes may be performed together, thus saving half
the required multiplications. For this situation, the FFT "butterfly" can be written as

XM+1(i) = Xm(i) + X(j)Wq

Xm+i(j) = Xm(i) -Xm(j)W-
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It should now be apparent that the FFT algorithm can be computed by repeated use of
this basic computational kernel. This of course, assumes that the location of data and
coefficients to be accessed at any given time is known or can be computed. This problem
of address generation can be considered the domain of an external control or address unit.


